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Introducing Phoenix

• Framework for building compilers and 
program analysis tools 

• Collaborative project between the Microsoft 
Research, Visual C++, and .NET Common 
Language Runtime groups at Microsoft 

• Foundation for the next generation of 
Microsoft development tools



Phoenix Architecture

• Inputs are 
converted to an 
intermediate 
representation (IR)

• Phoenix API allows 
compiler plug-ins or 
standalone tools to 
add or hook phases 
of IR creation



Phoenix Architecture

• Phases process IR 
to provide 
abstractions such 
as call graphs, 
flow graphs, 
region graphs, 
single static 
assignment (SSA) 
annotations



Phoenix Architecture



Phoenix Applications

• Compiler development
– Optimization
– Retargeting

• Binary Instrumentation
– Profiling/Code coverage
– Binary protection/obfuscation 

• Program Analysis
– Model inference
– Vulnerability detection



Using Phoenix

• Load targets manually or via plug-ins
• Use phase lists or raise binaries 

manuallyPEModuleUnit module = null;

module = PEModuleUnit.Open(path);
module.LoadPdb();
module.LoadGlobalSymbols();

Phx.Symbols.Table table = module.SymbolTable;            
Phx.Symbols.LocalIdMap localMap = table.LocalIdMap;
Phx.Collections.IdToSymbolMap symbolMap = localMap.InternalMap;
Phx.Collections.IdToSymbolMap.Iterator iterator = 

new Phx.Collections.IdToSymbolMap.Iterator(symbolMap);

while (iterator.MoveNext())
{
  if (iterator.CurrentValue.IsFunctionSymbol) 
  {
    FunctionSymbol function =  iterator.CurrentValue.AsFunctionSymbol;



Using Phoenix

• Load targets manually or via plug-ins
• Use phase lists or raise binaries 

manuallypublic class PlugIn : Phx.PlugIn {

public override void BuildPhases 
(Phx.Phases.PhaseConfiguration config)
{
  Phx.Phases.Phase funcNamesPhase;
  funcNamesPhase = Phase.New(config);
 
  Phx.Phases.Phase encodingPhase = 
     
config.PhaseList.FindByName("Encoding");
  
  
encodingPhase.InsertBefore(funcNamesPhase)
;
}

public override System.String NameString
{
   get { return "FuncNames"; }
}

public class Phase : Phx.Phases.Phase 
{

public static Phx.Phases.Phase 
New (Phx.Phases.PhaseConfiguration 
config)
{
  Phase phase = new Phase();
  phase.Initialize(config, 
"FuncNames");
  return phase;
}

protected override void 
Execute (Phx.Unit unit)
{
  if (!unit.IsFunctionUnit) return;

   Phx.FunctionUnit function = 
unit.AsFunctionUnit;

   



Using Phoenix

• Units
– Programs, Assemblies, Modules, Functions

• Types
– Primitives, Symbolic 

• Symbols
– Static, Dynamic

• Intermediate Representation
– Primary abstraction of program semantics
– Composed of Instructions and Operands
– Three distinct levels of abstraction



Phoenix Intermediate 
Representation

• High-level IR (HIR)
– Architecture Independent
– Abstract instructions represent runtime indirection
– Operands refer to logical resources

More Abstract Less Abstract

HIR MIR LIR EIR

Lowering

Raising



Phoenix Intermediate 
Representation

• Mid-level IR (MIR)
– Architecture Independent
– Runtime logic explicitly defined
– Operands still refer to logical resources

More Abstract Less Abstract

HIR MIR LIR EIR

Lowering

Raising



Phoenix Intermediate 
Representation

• Low-level IR (LIR)
– Architecture dependent
– Control flow explicit
– Operands refer to logical or physical resources

More Abstract Less Abstract

HIR MIR LIR EIR

Lowering

Raising



Phoenix Instructions

• Code or Data object
• Source and 

Destination Operands
• Annotation Operands

• Types
– Label
– Value
– Compare
– Branch
– Call
 

$L1: (references=0)
   {*StaticTag}, {*NotAliasedTag} = START 
WriteData(T)
WriteData: (references=1)
                       ENTERFUNCTION 
   Local0, {ESP}     = push EBP
   EBP               = mov ESP
   tv144-            = mov 4112(0x00001010)
   {ESP}             = call _chkstk, {ESP}

   offset            = mov 8
   tv144-, {ESP}     = call CreateHeader, {ESP}

   header            = mov tv144-
   $Stack+32928, {ESP} = push 8
   $Stack+32960, {ESP} = push header
   tv144-            = lea &buf*

$L1: (references=0)                                 
                
   {*StaticTag}, {*NotAliasedTag} = START _main(T)  
                
_main: (references=1)                               
                
   _argc, _argv   = ENTERFUNCTION                   
             
   t273           = COMPARE(GT) _argc, 1            
             
                  CONDITIONALBRANCH(True) t273, 
$L7, $L6
$L7: (references=1)                                 
                
   _message       = ASSIGN &$SG3745                 
             
                    GOTO $L8                        
             

Low-level IR

High-level IR



Phoenix Operands

• Instruction arguments
• Temporary Variables
• Alias Tags
• Alias Operands

• Types
– Memory
– Constants
– Variables
– Functions
– Labels
– Alias Sets

$L1: (references=0)
   {*StaticTag}, {*NotAliasedTag} = START 
WriteData(T)
WriteData: (references=1)
                       ENTERFUNCTION 
   Local0, {ESP}     = push EBP
   EBP               = mov ESP
   tv144-            = mov 4112(0x00001010)
   {ESP}             = call _chkstk, {ESP}

   offset            = mov 8
   tv144-, {ESP}     = call CreateHeader, {ESP}

   header            = mov tv144-
   $Stack+32928, {ESP} = push 8
   $Stack+32960, {ESP} = push header
   tv144-            = lea &buf*

$L1: (references=0)                                 
                
   {*StaticTag}, {*NotAliasedTag} = START _main(T)  
                
_main: (references=1)                               
                
   _argc, _argv   = ENTERFUNCTION                   
             
   t273           = COMPARE(GT) _argc, 1            
             
                  CONDITIONALBRANCH(True) t273, 
$L7, $L6
$L7: (references=1)                                 
                
   _message       = ASSIGN &$SG3745                 
             
                    GOTO $L8                        
             

Low-level IR

High-level IR



Phoenix Alias Package

• Alias System provides a memory model for 
static program analysis 

• Aliases abstract memory and register use by 
assigning tags to discrete locations

 
• Alias Operands added to represent implicit 

effects of an instruction on memory

 

[ESP], {ESP} = push _message[EBP]



Call Graphs

• A Call Graph is a visual 
representation of call relationships 
between functions



• Traditional call graph generation

• Phoenix includes a Call Graph 
Package that provides module or 
program level function relationships

Call Graphs

foreach(Function in ModuleFunctions)
   foreach(CallInstruction in 
Instructions)
      AddCallEdge(Function, 
CallTarget))

Collect all call edges
foreach(Edge in CallEdges)
   if(Target == Function)
      EdgesTo.Add(Edge) 
   if(Source == Function)
      EdgesFrom.Add(Edge)  
  

Find edges for Function



Control Flow Graphs

• Control Flow Graph are 
visual representations of 
branch relationships 
between basic blocks

• Phoenix provides a 
Control Flow Graph 
package that specifies 
edge types, node types, 
node dominance



Graph Traversal

• Depth First Search
– Visit nodes following edges as deep as 

possible before returning to the next 
edge



Graph Traversal

• Depth First Search
– Visit nodes following edges as deep as 

possible before returning to the next 
edge



Graph Traversal

• Depth First Search
– Visit nodes following edges as deep as 

possible before returning to the next 
edge

• DFS Outputs
• Spanning Tree (DAG)
• Preordered Vertices
• Postordered Vertices 
• Reverse Postorder Vertices



Reaching Definition Analysis

• A variable assignment [x := a]l may 
reach a code location if there is an 
execution of the program where x 
was last assigned at l when the code 
location is reached

• An assignment reaches the entry of a 
block if it reaches the exit of any of 
the blocks that precede it



Reaching Definition Analysis

x = 5; 
y = 1; 
while (x > 1) 
{ 
    y = x * y; 
    --x; 
}



Reaching Definition Analysis

x = 5; 
y = 1; 
while (x > 1) 
{ 
    y = x * y; 
    --x; 
}

[x = 5]1

[--
x]5

[y = x * 
y]4

[x > 1]3

[y = 1]2



Reaching Definition Analysis

[x = 5]1

[--
x]5

[y = x * 
y]4

[x > 1]3

[y = 1]2
1
2
3
4
5

(x, ?), (y, ?)
(x, 1), (y, ?)
(x, 1), (x, 5), (y, 2)
(x, 1), (x, 5) (y, 2), (y, 4)
(x, 1), (x, 5), (y, 4)

(x, 1), (y, ?)
(x, 1), (y, 2)
(x, 1), (x, 5), 
(y, 2)
(x, 1), (x, 5) 
(y, 4)
(x, 5), (y, 4)

RDentry RDexit



Single Static Assignment

• Intermediate form used by several 
compilers in which every variable is 
assigned only once 



Single Static Assignment

• Use-definition relationships explicit
– Each use reached by only one definition
– Each definition dominates all uses



Single Static Assignment

• Special Φ (Phi) instructions are added 
to the beginning of blocks to 
represent joins of different versions 
of the same variable



Data Flow Graphs

• Reaching definitions allow the 
construction of a context-free data 
flow graph



Data Flow Graphs

• Converting to SSA form allows the 
simple construction of a contextual 
data flow graph



Applied Data Flow Analysis

• API Path Validation
– Determine whether there is a code path from data 

input function to a function using the data that does 
not flow through a sanitizing function

– Method
• Create an array of bit vectors to hold each path to each 

function
• Propagate inherited bit vectors by performing a union on 

the two bit vectors

– Real world use – SQL Injection prevention



Applied Data Flow Analysis

• Syntax Model Inference
– Determine the type layout of every abstract structure 

that reaches a specified function call

– Method
• Calculate call graph for target function
• Gather Reaching Definition data for all functions in graph
• Record type for each definition in each function
• Walk unique call graph paths backwards collecting type flow 

information

– Real world use – generate fuzzer definitions



Applied Data Flow Analysis

• Integer Overflow Detection
– Given a call to an allocation function, determine 

whether the input size could have wrapped

– Method
• Trace data input to memory allocation functions 

backward
• Determine if the value is generated in with potentially 

user controlled data

– Real world use – detect bugs!



Final Thoughts

• Phoenix is amazingly powerful and extensible. It 
will change how academic compiler research is 
done on the Windows platform

• The security industry has a lot to learn from the 
academic archives of the last 30 years. Read 
Dawson Engler, David Wagner, Cousot

• Improved programming processes and advances 
in static analysis is and will continue to improve 
software security



Get Involved!

• Get phoenix
– http://research.micorosft.com/phoenix

• Participate in online phoenix forums

• Contact us at switech@microsoft.com

http://research.micorosft.com/phoenix
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