
AutoHacking with Phoenix
Enabled Data Flow

Analysis

Richard Johnson | switech@microsoft.com

Topics

• Phoenix
– Architecture
– Fundamentals

• Program Analysis
– Call Flow
– Control Flow
– Data Flow

• Applied Program Analysis
– API Path Validation
– Integer Overflow Detection
– Syntax Model Inference

Introducing Phoenix

• Framework for building compilers and
program analysis tools

• Collaborative project between the Microsoft
Research, Visual C++, and .NET Common
Language Runtime groups at Microsoft

• Foundation for the next generation of
Microsoft development tools

Phoenix Architecture

• Inputs are
converted to an
intermediate
representation (IR)

• Phoenix API allows
compiler plug-ins or
standalone tools to
add or hook phases
of IR creation

Phoenix Architecture

• Phases process IR
to provide
abstractions such
as call graphs,
flow graphs,
region graphs,
single static
assignment (SSA)
annotations

Phoenix Architecture

Phoenix Applications

• Compiler development
– Optimization
– Retargeting

• Binary Instrumentation
– Profiling/Code coverage
– Binary protection/obfuscation

• Program Analysis
– Model inference
– Vulnerability detection

Using Phoenix

• Load targets manually or via plug-ins
• Use phase lists or raise binaries

manuallyPEModuleUnit module = null;

module = PEModuleUnit.Open(path);
module.LoadPdb();
module.LoadGlobalSymbols();

Phx.Symbols.Table table = module.SymbolTable;
Phx.Symbols.LocalIdMap localMap = table.LocalIdMap;
Phx.Collections.IdToSymbolMap symbolMap = localMap.InternalMap;
Phx.Collections.IdToSymbolMap.Iterator iterator =

new Phx.Collections.IdToSymbolMap.Iterator(symbolMap);

while (iterator.MoveNext())
{
 if (iterator.CurrentValue.IsFunctionSymbol)
 {
 FunctionSymbol function = iterator.CurrentValue.AsFunctionSymbol;

Using Phoenix

• Load targets manually or via plug-ins
• Use phase lists or raise binaries

manuallypublic class PlugIn : Phx.PlugIn {

public override void BuildPhases
(Phx.Phases.PhaseConfiguration config)
{
 Phx.Phases.Phase funcNamesPhase;
 funcNamesPhase = Phase.New(config);

 Phx.Phases.Phase encodingPhase =

config.PhaseList.FindByName("Encoding");

encodingPhase.InsertBefore(funcNamesPhase)
;
}

public override System.String NameString
{
 get { return "FuncNames"; }
}

public class Phase : Phx.Phases.Phase
{

public static Phx.Phases.Phase
New (Phx.Phases.PhaseConfiguration
config)
{
 Phase phase = new Phase();
 phase.Initialize(config,
"FuncNames");
 return phase;
}

protected override void
Execute (Phx.Unit unit)
{
 if (!unit.IsFunctionUnit) return;

 Phx.FunctionUnit function =
unit.AsFunctionUnit;

Using Phoenix

• Units
– Programs, Assemblies, Modules, Functions

• Types
– Primitives, Symbolic

• Symbols
– Static, Dynamic

• Intermediate Representation
– Primary abstraction of program semantics
– Composed of Instructions and Operands
– Three distinct levels of abstraction

Phoenix Intermediate
Representation

• High-level IR (HIR)
– Architecture Independent
– Abstract instructions represent runtime indirection
– Operands refer to logical resources

More Abstract Less Abstract

HIR MIR LIR EIR

Lowering

Raising

Phoenix Intermediate
Representation

• Mid-level IR (MIR)
– Architecture Independent
– Runtime logic explicitly defined
– Operands still refer to logical resources

More Abstract Less Abstract

HIR MIR LIR EIR

Lowering

Raising

Phoenix Intermediate
Representation

• Low-level IR (LIR)
– Architecture dependent
– Control flow explicit
– Operands refer to logical or physical resources

More Abstract Less Abstract

HIR MIR LIR EIR

Lowering

Raising

Phoenix Instructions

• Code or Data object
• Source and

Destination Operands
• Annotation Operands

• Types
– Label
– Value
– Compare
– Branch
– Call

$L1: (references=0)
 {*StaticTag}, {*NotAliasedTag} = START
WriteData(T)
WriteData: (references=1)
 ENTERFUNCTION
 Local0, {ESP} = push EBP
 EBP = mov ESP
 tv144- = mov 4112(0x00001010)
 {ESP} = call _chkstk, {ESP}

 offset = mov 8
 tv144-, {ESP} = call CreateHeader, {ESP}

 header = mov tv144-
 $Stack+32928, {ESP} = push 8
 $Stack+32960, {ESP} = push header
 tv144- = lea &buf*

$L1: (references=0)

 {*StaticTag}, {*NotAliasedTag} = START _main(T)

_main: (references=1)

 _argc, _argv = ENTERFUNCTION

 t273 = COMPARE(GT) _argc, 1

 CONDITIONALBRANCH(True) t273,
$L7, $L6
$L7: (references=1)

 _message = ASSIGN &$SG3745

 GOTO $L8

Low-level IR

High-level IR

Phoenix Operands

• Instruction arguments
• Temporary Variables
• Alias Tags
• Alias Operands

• Types
– Memory
– Constants
– Variables
– Functions
– Labels
– Alias Sets

$L1: (references=0)
 {*StaticTag}, {*NotAliasedTag} = START
WriteData(T)
WriteData: (references=1)
 ENTERFUNCTION
 Local0, {ESP} = push EBP
 EBP = mov ESP
 tv144- = mov 4112(0x00001010)
 {ESP} = call _chkstk, {ESP}

 offset = mov 8
 tv144-, {ESP} = call CreateHeader, {ESP}

 header = mov tv144-
 $Stack+32928, {ESP} = push 8
 $Stack+32960, {ESP} = push header
 tv144- = lea &buf*

$L1: (references=0)

 {*StaticTag}, {*NotAliasedTag} = START _main(T)

_main: (references=1)

 _argc, _argv = ENTERFUNCTION

 t273 = COMPARE(GT) _argc, 1

 CONDITIONALBRANCH(True) t273,
$L7, $L6
$L7: (references=1)

 _message = ASSIGN &$SG3745

 GOTO $L8

Low-level IR

High-level IR

Phoenix Alias Package

• Alias System provides a memory model for
static program analysis

• Aliases abstract memory and register use by
assigning tags to discrete locations

• Alias Operands added to represent implicit

effects of an instruction on memory

[ESP], {ESP} = push _message[EBP]

Call Graphs

• A Call Graph is a visual
representation of call relationships
between functions

• Traditional call graph generation

• Phoenix includes a Call Graph
Package that provides module or
program level function relationships

Call Graphs

foreach(Function in ModuleFunctions)
 foreach(CallInstruction in
Instructions)
 AddCallEdge(Function,
CallTarget))

Collect all call edges
foreach(Edge in CallEdges)
 if(Target == Function)
 EdgesTo.Add(Edge)
 if(Source == Function)
 EdgesFrom.Add(Edge)

Find edges for Function

Control Flow Graphs

• Control Flow Graph are
visual representations of
branch relationships
between basic blocks

• Phoenix provides a
Control Flow Graph
package that specifies
edge types, node types,
node dominance

Graph Traversal

• Depth First Search
– Visit nodes following edges as deep as

possible before returning to the next
edge

Graph Traversal

• Depth First Search
– Visit nodes following edges as deep as

possible before returning to the next
edge

Graph Traversal

• Depth First Search
– Visit nodes following edges as deep as

possible before returning to the next
edge

• DFS Outputs
• Spanning Tree (DAG)
• Preordered Vertices
• Postordered Vertices
• Reverse Postorder Vertices

Reaching Definition Analysis

• A variable assignment [x := a]l may
reach a code location if there is an
execution of the program where x
was last assigned at l when the code
location is reached

• An assignment reaches the entry of a
block if it reaches the exit of any of
the blocks that precede it

Reaching Definition Analysis

x = 5;
y = 1;
while (x > 1)
{
 y = x * y;
 --x;
}

Reaching Definition Analysis

x = 5;
y = 1;
while (x > 1)
{
 y = x * y;
 --x;
}

[x = 5]1

[--
x]5

[y = x *
y]4

[x > 1]3

[y = 1]2

Reaching Definition Analysis

[x = 5]1

[--
x]5

[y = x *
y]4

[x > 1]3

[y = 1]2
1
2
3
4
5

(x, ?), (y, ?)
(x, 1), (y, ?)
(x, 1), (x, 5), (y, 2)
(x, 1), (x, 5) (y, 2), (y, 4)
(x, 1), (x, 5), (y, 4)

(x, 1), (y, ?)
(x, 1), (y, 2)
(x, 1), (x, 5),
(y, 2)
(x, 1), (x, 5)
(y, 4)
(x, 5), (y, 4)

RDentry RDexit

Single Static Assignment

• Intermediate form used by several
compilers in which every variable is
assigned only once

Single Static Assignment

• Use-definition relationships explicit
– Each use reached by only one definition
– Each definition dominates all uses

Single Static Assignment

• Special Φ (Phi) instructions are added
to the beginning of blocks to
represent joins of different versions
of the same variable

Data Flow Graphs

• Reaching definitions allow the
construction of a context-free data
flow graph

Data Flow Graphs

• Converting to SSA form allows the
simple construction of a contextual
data flow graph

Applied Data Flow Analysis

• API Path Validation
– Determine whether there is a code path from data

input function to a function using the data that does
not flow through a sanitizing function

– Method
• Create an array of bit vectors to hold each path to each

function
• Propagate inherited bit vectors by performing a union on

the two bit vectors

– Real world use – SQL Injection prevention

Applied Data Flow Analysis

• Syntax Model Inference
– Determine the type layout of every abstract structure

that reaches a specified function call

– Method
• Calculate call graph for target function
• Gather Reaching Definition data for all functions in graph
• Record type for each definition in each function
• Walk unique call graph paths backwards collecting type flow

information

– Real world use – generate fuzzer definitions

Applied Data Flow Analysis

• Integer Overflow Detection
– Given a call to an allocation function, determine

whether the input size could have wrapped

– Method
• Trace data input to memory allocation functions

backward
• Determine if the value is generated in with potentially

user controlled data

– Real world use – detect bugs!

Final Thoughts

• Phoenix is amazingly powerful and extensible. It
will change how academic compiler research is
done on the Windows platform

• The security industry has a lot to learn from the
academic archives of the last 30 years. Read
Dawson Engler, David Wagner, Cousot

• Improved programming processes and advances
in static analysis is and will continue to improve
software security

Get Involved!

• Get phoenix
– http://research.micorosft.com/phoenix

• Participate in online phoenix forums

• Contact us at switech@microsoft.com

http://research.micorosft.com/phoenix

	Slide 1
	Topics
	Introducing Phoenix
	Phoenix Architecture
	Phoenix Architecture
	Phoenix Architecture
	Phoenix Applications
	Using Phoenix
	Using Phoenix
	Using Phoenix
	Phoenix Intermediate Representation
	Phoenix Intermediate Representation
	Phoenix Intermediate Representation
	Phoenix Instructions
	Phoenix Operands
	Phoenix Alias Package
	Call Graphs
	Call Graphs
	Control Flow Graphs
	Graph Traversal
	Graph Traversal
	Graph Traversal
	Reaching Definition Analysis
	Reaching Definition Analysis
	Reaching Definition Analysis
	Reaching Definition Analysis
	Single Static Assignment
	Single Static Assignment
	Single Static Assignment
	Data Flow Graphs
	Data Flow Graphs
	Applied Data Flow Analysis
	Applied Data Flow Analysis
	Applied Data Flow Analysis
	Final Thoughts
	Get Involved!

